
Distribution of structure factors and phase transitions in a driven lattice gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 6717

(http://iopscience.iop.org/0305-4470/29/21/008)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 04:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 6717–6728. Printed in the UK

Distribution of structure factors and phase transitions in a
driven lattice gas

M S Rudzinsky† and R K P Zia‡
† Strategic and Space Systems Department, Naval Surface Warfare Center, Dahlgren Division,
17320 Dahlgren Road, Dahlgren, VA 22448-5100, USA
‡ Center for Stochastic Processes in Science and Engineering and Physics Department,
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435, USA

Received 8 May 1996

Abstract. Using Monte Carlo methods, we study the full distribution of structure factors in the
standard driven lattice gas at half filling. The time evolution of the structure factors associated
with the two lowest non-trivial wavevectors is used to construct histograms. For saturation drive,
at temperatures well aboveTc, both are exponentially distributed, but with different widths.
These results are well described by a continuum field theory with a dynamics which violates
the usual fluctuation dissipation theorem. AsT is lowered, one of these distributions remains
essentially unaltered. By contrast, the other develops a maximum away from the origin, while
staying single-peaked throughout. This behaviour is an unmistakable signal for a continuous
transition.

1. Introduction

To probe a physical system, one of the most venerable techniques is to study the scattering of
a beam of, e.g., light, electrons or neutrons. If there are many stochastic degrees of freedom
in the system, the intensity of the scattered radiation is a direct measure of theaveragetwo-
point correlation. The quantities involved in this correlation function differ from system
to system. For example, they could be deviations of the local densities from the overall
average, in case of fluid mixtures, or simply local spin densities in the case of ferromagnetic
systems. Here, we refer to them collectively asφ(x, t). Note that, in addition to the spatial
coordinatex, we have introduced time dependence intoφ, since these densities clearly
fluctuate in time. Depending on the set-up of the scattering experiment, the timescales
associated with these fluctuations might be small or large. Often, they are small, so that
a typical measurement of the intensity of the scattered beam reveals theφ–φ correlation
as averages over both space and time. On the other hand, if ‘snap-shots’ ofφ(x, t) for
different t can be stored separately, then we have theφ–φ correlation as averages over
space only, while the temporal average can be taken afterwards to produce the previous
result. Of course, in the latter case, we have more information about our system. For
example, instead of taking the temporal average to produce the mean, we could also find
the standard deviation and other statistical quantities. Indeed, we could study the entire
distribution function. The ‘price paid’ for this extra information is that each individual
‘snap-shot’ appears as a random pattern of speckles. The study of such patterns and their
statistical properties in laser scattering is well established [1].
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In this paper, we analyse these distributions of anon-equilibrium steady-statesystem,
namely the driven diffusive lattice gas [2, 3]. Introduced by Katzet al [2], it is meant to
capture the physics of fast ionic conductors subjected to a constant electric field. Using only
the bare essential ingredients, this model consists of particles diffusing in a fixed background
lattice, with hopping rates that depend on a nearest-neighbour attractive potential, an
excluded volume constraintand the external drive. Clearly, it is one of the simplest systems
for the study of statistical mechanics of non-equilibrium steady states. In the absence of
the drive, this is the Ising model [4] with a constraint on its total magnetization. Many
of its properties are well known, especially in two dimensions [5]. On the other hand,
when driven far from equilibrium, this system displays novel collective behaviour [3]. In
particular, though the second-order phase transition, for a half-filled lattice, survives at
all values of the drive, its properties are quite distinct from the case in equilibrium. For
example, the ordered phase develops as a result of phase segregationtransverseto the
drive only [2]. In terms of the local density, this means thatonly the transverse diffusion
coefficient vanishes asT approachesTc. By contrast, for systems in equilibrium, both
coefficients are proportional to the inverse static susceptibility and must vanish together.
One major consequence is that the critical properties are entirely different from those in the
Ising universality class [6].

One goal of this paper is to show that distributions of the structure factor are excellent
tools for studying phase transitions here. Specifically, they provide a clear signal of the
second-order transition, as displayed in the lowest transverse component of the structure
factor, as well as thelack of a major event in the longitudinal component. To obtain
these distributions, we constructed histograms from the time traces of ‘snap-shots’ of the
two-point correlations. Of course, these traces carry even more information, namely, the
evolution from e.g., an initial random phase to a final phase segregated state. In the next two
sections, we provide a detailed description of the model studied and the simulation results.
In section 4, we analyse the macroscopic properties, using a continuum field theoretic
approach. For the disordered phase, this framework is quite successful in predicting the
exponential distribution observed in simulations. Finally, we summarize our findings and
speculate on future studies.

2. Specifications of the model

To describe the driven diffusive lattice gas we start with the usual Ising model, defined
on a d-dimensional hypercubic lattice withN sites. Each lattice site, labelled byi, can
be occupied or empty. Associated with these two states is an occupation variableni = 1
or 0. Alternatively, we can describe this model in terms of spins, where the states at
each site is described byσi = ±1. The relationship between these two descriptions is:
σi = 2ni − 1. In the following sections the spin language is used since it displays the
particle–hole symmetry explicitly. A configuration, denoted byC, is specified by either the
set of occupation numbers{ni} or spins{σi}.

The internal energy of a configuration of this system, assuming only a nearest-neighbour
interaction, is given by the Ising Hamiltonian

H = −J
∑
〈i,j〉

σiσj (2.1)

where the sum is over nearest-neighbour sites. We restrict ourselves toJ > 0,
corresponding to attractive (ferromagnetic) interactions. The interactions of our system
with its environment are represented by a coupling to a heat bath at a temperatureT .
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In equilibrium, all properties can then be computed by using the canonical distribution:
Peq(C) ∝ e−βH, whereβ ≡ 1/kBT . For d = 2, this system undergoes a well known
second-order transition at the Onsager temperature: 2.269J/kB [5]. In the subsequent
sections, allT s will be given in units of this quantity.

Since our eventual goal is the study of non-equilibrium steady states, let us discuss first
the time evolution, i.e. dynamics, of our system. In general, the lattice gas is now described
by a time-dependent probability distributionP(C, t), which satisfies a master equation:

∂

∂t
P(C, t) =

∑
C ′

{W [C ′ → C]P(C ′, t) − W [C → C ′]P(C, t)} (2.2)

whereW [C → C ′] stands for the rate at which the system makes a transition fromC to
C ′. Specifying these rates determines the model dynamics, and, jointly with the boundary
conditions, the stationary distribution:P∗(C) ≡ P(C, t → ∞). For a system to reach
equilibrium whereP∗(C) is the canonicalPeq(C), the rates must be chosen to satisfy the
detailed balance condition:

W [C ′ → C]

W [C → C ′]
= Peq(C)

Peq(C ′)
. (2.3)

Since the right-hand side is a function of1H ≡ H(C ′) − H(C) only, it is possible to
choose rates of the formW [C → C ′] = w(β1H), where w is any function satisfying
w(−x) = exw(x). In our simulations, Metropolis [7] rates, i.e.w(x) = min{1, e−x}
are used. Finally, we are interested in modelling a particle–hole system, we will choose
Kawasaki’s ‘spin-exchange’ dynamics [8], i.e.C and C ′ can differ by a single nearest-
neighbour particle–hole exchange. We will often refer to this change of a configuration as
a ‘particle-hop’. Note that, as a result, the total particle number (or the total magnetization)
is a constant of the motion.

Turning our focus to non-equilibrium steady states, we introduce a driving field which
we label byE. Its effect on the particles is to favour (suppress) hops in the direction of
(against)E, while transverse jumps remain unchanged. Such an external field is motivated
by either a gravitational field coupled to the more massive ‘particles’ or by an ‘electric’ field
coupled to ‘charged’ particles. In our modelE is assumed to be uniform in both space and
time and points along a specific lattice axis. This bias of the field can now be introduced
in the Ising lattice gas by modifying the set of transition rates,W [C → C ′], to include the
work done locally by the field. Thus, we add a termlE to 1H in the rate functions where
l = (−1, 0, +1) specifies jumps (along, transverse to, against)E. Incorporating (2.3), which
may be interpreted as a ‘local detailed balance’ condition, and using Metropolis rates, we
write

W [C → C′] = min{1, e−[β(1H+lE)]} (2.4)

whereE represents the product of the magnitude ofE, the ‘charge’ of the particle, and a
lattice constant. Finally, we must specify the boundary conditions. Since our interest is in
establishing anon-equilibriumsteady state, we select boundary conditions which excludes
this dynamics from being derivable from a global Hamiltonian. The simplest choice is
periodic boundary conditions (PBC), under which a non-trivial steady current is established
globally. A further advantage is that this system respects translational invariance.

3. Simulation results

We have performed Monte Carlo simulations of the driven diffusive model described above,
using 30×30 lattices(N = 900). This size was chosen partly because it allows a convenient
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comparison with the original investigation [2]. To study thedistribution of the structure
factors, we let this system run in a steady state and measure various two-point correlations
(and their Fourier transforms) at regular time intervals. From their time series, instead
of finding a simple average, we build histograms which represent the distributions. The
temperature is then varied, in order to study how these distributions change as the system
goes through its critical point.

In the literature, the term ‘structure factor’, denoted byS(k) here, typically refers to
the (ensemble- or time-) average of the operator:

ŝ(k) ≡ 1

N

∑
i,j

eik·(j−i)σiσj (3.1)

i.e.

S(k) = 〈ŝ(k)〉. (3.2)

Since〈σiσj〉 is the spin–spin correlation function,S corresponds to its Fourier transform.
As time evolves and the configuration changes in a simulation,ŝ(k), for each specifick,
takes on various values. The average of these values is then reported asS(k). Here, we
seek the entire distribution of these values, i.e. the function

P(s; k) = 〈δ(s − ŝ)〉. (3.3)

Since our dynamics conserves total magnetization,ŝ(0) is fixed and its distribution is trivial.
Turning to non-zerok, we focus on, for simplicity, the two lowest values: one longitudinal
and one transverse toE. In an undriven system,x ⇔ y symmetry implies that there is
no extra information by studying both. In the driven case however, they are drastically
different [2, 3], so that measuring both quantities can be quite revealing. In particular, in a
disordered phase, theseŝ’s would be O(1). On the other hand, for an ordered system, with
phase segregation into two strips, one of these would be O(N), depending on the orientation
of the strips. Thus, they are good candidates for an order parameter as well. Explicitly,
these two wavevectors are(k⊥, k‖) = (2π/30)(0, 1) and (k⊥, k‖) = (2π/30)(1, 0). Their
associated̂s’s will be denoted bŷs(0, 1) and ŝ(1, 0), respectively.

For our simulations, we setE at 50J , which corresponds to, for all practical purposes,
an ‘infinite’ drive. The reason for this choice is to maximize the difference between a non-
equilibrium system and its equilibrium counterpart. With such a large drive, it is known
that the driven model, at half filling, undergoes a second-order phase transition atTc ' 1.4
[9]. Thus, we will examine a range of temperatures fromT = 2.2 to 1.2, in steps of 0.2.

The initial configurations of each run are random and half-filled, corresponding to total
magnetization of zero(

∑
σi = 0). Quenching toT = 2.2, we then let the system run

for 100 K Monte Carlo steps (MCS). Starting with this final configuration,T is lowered
by 0.2 and the system is run for another 100 K MCS. This procedure is repeated untilT

reaches 1.2. After each quench, measurements were not taken during the first 10 K MCS,
so that the system may settle down to the new steady state. Data forŝ(1, 0) and ŝ(0, 1) are
then collected by sampling configurations every 100 MCS. Thus, each of these time traces
contain 900 points. Finally, to insure an adequate data sample nearTc, we have taken the
last configuration of theT = 1.4 run and let the system evolve for another 100 K MCS.
As a result histograms for thisT are built from 1900 data points.

In figures 1(a)–(c), we show the time traces ofŝ(1, 0) for three different temperatures:
T = 2.2, 1.4 and 1.2, respectively. Clearly,ŝ(1, 0) indicates that ordering, associated with
strips aligned with the field, occurred. With these traces, and similar ones forŝ(0, 1), we
select appropriate bin sizes (on the vertical axis) to construct histograms. Thus, a histogram
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Figure 1. Time traces of̂s(1, 0) for three different temperatures. The unit of time is 103 MCS.
(a) T = 2.2, (b) T = 1.4, (c) T = 1.2.

Figure 2. Histograms representing distributions of structure factors,P(s; k). Figures in the left
column (a)–(c) are for̂s(1, 0). Those in the right column (d)–(f) are forŝ(0, 1).

displays, effectively, the horizontal cross sections of a time trace. In figure 2 we show such
histograms for botĥs(1, 0) and ŝ(0, 1), at the same threeT s. Note that the bin size for
ŝ(0, 1) is fixed at 0.5. However, sincês(1, 0) increases through the phase transition we use
an increasing bin size to display these distributions, i.e. 1, 8, and 10 forT = 2.2, 1.4, and
1.2, respectively. Similarly, note that the scale of the abscissae are not uniform throughout,
further highlighting the contrast between the two structure factors. Finally, to match the
other cases, we have renormalized theT = 1.4 histograms, since there are more than twice
the number of data points here.

The most striking feature displayed in figure 2 is surely the contrast between the
behaviour ofŝ(1, 0) and ŝ(0, 1). As T drops through the transition, the distribution for
the latter shows almost imperceptible changes. On the other hand, the distribution for
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ŝ(1, 0), while displaying significant changes, remainssingle-peakedthroughout. This is a
clear signal of a continuous transition. In particular, atT = 1.4, the slope of the distribution
at the origin is zero, which is consistent with the assignment of a second-order transition.
The extent of the fluctuations can also be appreciated directly: from very large values for
ŝ(1, 0) near or below criticality, to O(1) for ŝ(0, 1) at all T and ŝ(1, 0) in the disordered
phase. A more thorough study of the critical region, in the spirit of those for the equilibrium
Ising model [10], should be carried out, with the most likely outcome being a universal
scaling distribution. In this paper, we focus on the distributions forT � Tc. These turn out
to be exponentials. In figure 3, log-linear plots of the distributions for bothŝ’s, at T = 2.2,
show that the data points generally fall on a straight line. Least-squares fits with straight
lines are then used to yield the slopes. If the distributions were precisely exponential, i.e.

P(s; k) ∝ e−s/s0(k) (3.4)

the average would be the inverse of this slope, i.e.s0(k). Thus a comparison between
the fitted slopes and the measured averages, i.e.S(k) from (3.2, 3.3), will provide a
crude estimate for how good the exponential approximation is. Table 1 summarizes this
comparison. There is reasonably good agreement, i.e. a few per cent, betweenS(k)

and s0(k). Note that we have included some cases for near and below criticality for
completeness, though we have no theoretical basis forP being an exponential. In the
next section, we will provide a framework which should be valid far above the critical
temperature and which predicts exponential distributions.

Figure 3. Plots of ln P(s; k) againsts at T = 2.2 for ŝ(1, 0) and ŝ(0, 1) with least-squares
fitted straight lines. Full circles are forŝ(1, 0), open circles for̂s(0, 1).

4. Analytic approach and discussion

To arrive at some understanding of the large distance behaviour found above, it is customary
to exploit a coarse-grained, continuum description. The occupation numbersni at discrete
times are replaced by a density fieldρ(x, t), for which a Langevin equation of motion is
postulated. The simplest approach [3] begins with the continuity equation∂tρ + ∇ · J = 0
and writing the current as a sum of a diffusive part and an Ohmic term. The former may
be chosen to be that for model B, following Hohenberg and Halperin [11]:−λ∇(δH/δρ),
whereλ is a (constant) transport coefficient andH is the free energy functional, assumed
to be the Landau–Ginzburg Hamiltonian here. For the latter, we writeME ê, whereê is a
unit vector in the field direction,E is a coarse-grained version of the microscopic driveE

and M is a (density-dependent) mobility factor which we will assume to take the simple
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Table 1. Summary and comparison of (averaged) structure factors,S(k) and the inverse slope
s0(k), computed by two different methods forT = 2.2 to 1.2. ‘S()’ column is the average value
of the structure factor calculated directly from the time series. ‘s0()’ column is the value of the
structure factor calculated from the slope of the fitted line from the ln plot ofP(s; k) againsts.

T/Tc S(1, 0) s0(1, 0) S(0, 1) s0(0, 1)

2.2 3.69 3.76 1.02 1.04
2.0 5.28 5.25 1.01 1.06
1.8 6.64 6.86 1.13 1.12
1.6 12.24 12.85 1.17 1.16
1.4 45.08 — 1.29 1.27
1.2 175.07 — 0.88 0.93

form ρ(1 − ρ) [3]. In general, the drive will induce spatial anisotropy, so that parameters
associated with the directions transverse to the field should be different from those for the
‘longitudinal’ direction. In addition to the above two systematic currents, there would be
the random, noisy Langevin terms. Mindful of anisotropy, we denote the transverse and
longitudinal components separately, byξi and ζ , respectively. Both are assumed to be
Gaussians, with zero mean and the following variances:

〈ξi(x, t)ξj (x
′, t ′)〉 = n⊥δij δ(x − x′)δ(t − t ′) (4.1a)

and

〈ζ(x, t)ζ(x′, t ′)〉 = n‖δ(x − x′)δ(t − t ′). (4.1b)

Thus, we write

P(ξ, ζ ) ∝ exp

{
− 1

2

∫
dx dt

(
ξ2

n⊥
+ ζ 2

n‖

)}
(4.2)

for the distribution.
Putting all these terms together and usingφ ≡ 2ρ − 1 in the magnetic language, we

arrive at [6, 3]
∂

∂t
φ = λ

{
(τ⊥ − α⊥∇2)∇2φ + (τ‖ − α‖∂2)∂2φ − 2αx∂

2∇2φ + u

3!
(∇2φ3 + κ∂2φ3)

}
+E∂φ2 − (∇ · ξ + ∂ζ ) (4.3)

where thetransverse gradientshave been denoted by∇ and the longitudinal ones by
∂. All these parameters (includingτ , α, u, κ) may be derived, in principle [12], from
the microscopic model. Thus, they should be regarded as functions ofJ , E and T , just
as the parameters in a Landau–Ginzburg Hamiltonian would be functions of those in the
microscopic system. While the details of these functions are not needed for predicting
macroscopic phenomena, a few basic properties must be established.

First, we focus on theτ ’s andn’s. If we were describing an equilibrium system with
anisotropic couplings and/or anisotropic transport coefficients, we must impose detailed
balance. One of its consequences is the fluctuation dissipation theorem (FDT), which, in
this case, implies the constraintτ⊥/τ‖ = n⊥/n‖. However, our interest is a system in
non-equilibrium steady state, so that we expect, generically,

τ⊥
τ‖

6= n⊥
n‖

. (4.4)

For systems in equilibrium, theτ ’s are associated with the inverse susceptibility above
criticality, so that they must be identical and vanish asT → Tc. Below Tc, it is customary
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to chooseτ < 0, which leads to phase separation [13]. Here, there is no such constraint
and they must be chosen so as to reproduce, at least qualitatively, what is observed. In
simulations below criticality, only states with inhomogeneitiestransverseto E have been
seen, so that it is natural to choose

τ‖ > 0 and τ⊥ < 0 (4.5)

for describing the system belowTc. On the other hand, bothn‖ andn⊥, being variances of
noise currents, must remain positive. As for the other parameters (λ, α’s, u, κ, andE), we
do not expect any changes in sign, asJ , E, andT are varied, so that there should be no
qualitative changes in macroscopic properties.

To proceed, in principle we would solve (4.3) forφ(x, t), with appropriate initial
conditions and then carry out the averages over(ξ, ζ ) using (4.2). In practice, however, this
procedure is clearly prohibitive, except in a linear approximation. For describing our system
away from criticality, renormalization group arguments show that such an approximation
can be better and better, as we focus on longer and longer length scales. In particular, we
will demonstrate that, for the driven system aboveTc, this approach leads to exponential
distributions of the structure factors, such as those reported above.

Restricting ourselves to the disordered phase insteady state, where〈φ〉 = 0, we linearize
(4.3) to

∂

∂t
φ(x, t) = λ{(τ⊥ − α⊥∇2)∇2φ + (τ‖ − α‖∂2)∂2φ − 2αx∂

2∇2φ} − (∇ · ξ + ∂ζ ). (4.6)

Defining Fourier transforms for the field and noise byφ(k, ω) ≡ ∫
exp[−i(k · x +

ωt)]φ(x, t), etc, the solution to this equation is simply

φ(k, ω) = {iω + 3(k)}−1(−i){k⊥ · ξ(k, ω) + k‖ζ(k, ω)} (4.7)

where

3(k) ≡ λ{τ⊥k2
⊥ + τ‖k2

‖ + (α⊥k4
⊥ + 2αxk

2
‖k

2
⊥ + α‖k4

‖)}. (4.8)

Since〈ξ〉 = 〈ζ 〉 = 0, we immediately recover〈φ〉 = 0. Similarly, thedynamicstructure
factor can be easily obtained:

S(k, ω) ≡ 〈φ∗(k, ω)φ(k, ω)〉 = N(k)

ω2 + 32(k)
(4.9)

where

N(k) ≡ n⊥k2
⊥ + n‖k2

‖ . (4.10)

From (4.9), we can find thesteady-statestructure factorS(k), defined to be the equal-time
correlation,

S(k) ≡ 〈φ∗(k, t)φ(k, t)〉 =
∫

dω

2π
S(k, ω) = N/23. (4.11)

It is the analogue of the static structure factor for equilibrium systems. Note that, for
those cases, the FDT will imply more than justτ⊥/τ‖ = n⊥/n‖. There would be further
constraints on theα’s, as well asn ∝ λT , so thatS(k) will take the Ornstein–Zernike form
T/(τ + k2).

Returning to driven systems, here we are interested in more than the simple average
〈φ∗(k, t)φ(k, t)〉. We seek theentire distributionof

ŝ(k) ≡ φ∗(k, t)φ(k, t) (4.12)
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i.e. the function

P(s; k) = 〈δ(s − ŝ)〉 =
∫

DξDζP (ξ, ζ )δ(s − ŝ). (4.13)

Note that (4.12) is just the continuum version of (3.1). Here, we have used slightly different
notation to distinguish functional integrals (over the noise here) from ordinary integrals.

Now, for eachk, there is such a distribution. However, at the level of the linear
approximation, thek-dependence ofφ is trivially related to that of(ξ, ζ ). Indeed, inverting
(4.7), we have explicitly

φ(k, t) =
∫ t

−∞
dt ′ exp[−3(k)(t − t ′)](−i){k⊥ · ξ(k, t ′) + k‖ζ(k, t ′)}. (4.14)

Meanwhile,δ(s − ŝ) depends on onlyφ andφ∗, the latter beingφ(−k, t) due to the reality
of φ(x, t). Thus, it is a function of ‘monochromatic’ (i.e., a single pair ofk′ and −k)
noise. Inspecting (4.2), we see thatP(ξ, ζ ) is also Gaussian inξ(k, t) andζ(k, t), so that
it factorizes into products over ‘monochromatic’ Gaussians. Thus, all integrations in (4.13)
are trivial, except those associated with asingle pair: ±k. As a result, we can regard

DξDζ as
∏

t

dξ(k, t) dξ(−k, t) dζ(k, t) dζ(−k, t). (4.15)

A convenient way to deal with the pair is to use, e.g.,

dξ(k, t) dξ(−k, t) = dξ(k, t) dξ∗(k, t) (4.16)

so that, once a particulark is chosen through (4.12), we can ignore−k completely. At this
stage, regardingk as a parameter and dropping all explicit reference to it would be most
natural. However, the exponent inP(ξ, ζ ) involves an integral over all momenta, so that
it will contain, e.g.,|ξ(k, t)|2/n⊥ as well as|ξ(−k, t)|2/n⊥. Since the latter is identical to
the former, we may simply double the integral and write

P(ξ, ζ ) ∝ exp

{
−

∫
dt

( |ξ(t)|2
n⊥

+ |ζ(t)|2
n‖

) }
. (4.17)

To go further, we find it easier to study the Laplace transform of (4.13):

P̃ (µ) =
∫

dsP (s) e−µs =
∫

DξDζP (ξ, ζ ) exp(−µŝ). (4.18)

Inserting (4.14) into (4.12), we see thatŝ is also quadratic in the noise, though diagonal
in neither the component index nort . Thus, the integrand in (4.18) is still a Gaussian,
controlled by the quadratic form:

η∗
α{Dαβ + µv∗

αvβ}ηβ (4.19)

where we have combined all components of the noise intoη and usedα to denote both the
component index andt (‘sum’ over t means

∫
dt). Here,D is diagonal, e.g.,δ(t − t ′)δij /n⊥

for the transverse components. Meanwhile,v can be read from (4.14):

vi(t
′) = −i(k⊥)i e−3(t−t ′)2(t − t ′) and v‖(t ′) = −ik‖ e−3(t−t ′)2(t − t ′) (4.20)

where2 is the step function. Since theη’s are complex and the matrix in (4.19) is Hermitian,
the Gaussian integrals lead to determinants rather than their square roots. Thus, (4.18) can
be evaluated:

P̃ (µ) = det{Dαβ}/ det{Dαβ + µv∗
αvβ} (4.21)

where the numerator comes from the normalization factor (so thatP̃ (0) = 1).
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The inverse ofD is well defined, given that it represents the noise correlation, so that
(4.21) reduces to 1/ det{δαβ + µD−1

αγ v∗
γ vβ}. But, det{δαβ + a∗

αbβ} = 1 + a∗
αbα, leading us to

P̃ (µ) = 1/{1 + µv∗
αD−1

αβ vβ}. (4.22)

Explicitly, v∗D−1v is just∫ 0

−∞
dt ′ dt ′′ e3t ′δ(t ′ − t ′′){n⊥k2

⊥ + n‖k2
‖} e3t ′′ (4.23)

which is justN/23, i.e. S(k) as defined in (4.11). Inserting this into (4.22) and inverting
the Laplace transform, we have

P(s; k) ∝ exp(−s/S(k)) (4.24)

i.e. an exponential distribution.
One important consequence of (4.24) is that its standard deviation,

√
〈(ŝ − S)2〉, takes

the same value asthe average. For those unfamiliar with distribution of laser speckles, say,
to find such a result may seem alarming. Naively, our confidence in a statistical sample
would be greater if the standard deviation, compared to the average, is smaller. Here, as
(4.24) shows, the better the sample, the closer the two will be.

For temperatures far aboveTc, the linear approximation (4.6) should be good and, as
shown in figure 3, the histograms fit the exponential quite well. Not surprisingly, the inverse
slopes extracted from linear fits to these plots agree with the averages〈φ∗φ〉. Though we
have presented the results for only two momenta, we have collected data for a few other
cases, with similar conclusions. However, for largerk, the correlations are smaller and the
statistics are correspondingly poorer.

As Tc is approached, the analysis above, based on a linear approximation about〈φ〉 = 0,
is expected to fail. This breakdown is clearly seen in figure 2(b), for which (4.24) is very
far from being a good fit. In fact, the distribution is reminiscent of a Gaussian! Perhaps
surprising, this resemblance can be understood qualitatively. Since the structure factor is
the product of a pair ofφ’s, a Gaussian in̂s would be similar to exp(−φ4). Similarly,
if we used Landau theory for the Ising model at criticality, and plotted the resultant
againstM2 instead ofM, we would also have a Gaussian. Returning to the histogram,
we see that the slope in the neighbourhood ofŝ(1, 0) = 0 vanishes, which supports the
phenomenological choiceτ⊥ → 0 as a description ofT → Tc. To carry out a reliable
analysis forT ' Tc would require not only the full power of dynamic renormalization
group [6, 14], but also generalizations to include terms like−µŝ(k) = −µφ∗(k, t)φ(k, t)

in the dynamic functional. This highly non-trivial undertaking would be worthwhile, but
is beyond the scope of this paper. Turning to the histogram forŝ(0, 1) (figure 2(e)), it
does not appear to differ much from an exponential. If we used mean-field theory alone,
we would argue that this is consistent with choosingτ‖ > 0 throughout the critical region.
However, since it is known that〈ŝ(0, 1)〉 suffers non-trivial renormalization [6], we should
expect this distribution to be modified by fluctuations also. Nevertheless, these effects may
be quantitatively small, leading to the close resemblance of the data to (4.24). Again, before
a careful renormalization analysis, sharp conclusions should not be drawn.

Below criticality, we see that the distribution ofŝ(1, 0) is no longer peaked about the
origin (figure 2(c)), a clear confirmation of its role as the appropriate order parameter. To
carry out the theoretical analysis for this is also no simple task. Indeed little or no analytic
work has been done on the details of the coexistence curve [3]. Finally, the histogram
for ŝ(0, 1) here (figure 2(f)) also appears to be an exponential. Since it is not the order
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parameter, perhaps it is possible to carry out the analysis, as in theT � Tc cases. We
believe that this is the most promising direction for progress in the immediate future.

To summarize, we have presented histograms of Monte Carlo data for the two most
important structure factors in the standard driven lattice gas [2, 3], namelyŝ(1, 0) andŝ(0, 1),
corresponding to the transverse and longitudinal components of the lowest wavevectors.
At infinite drive andT well aboveTc, both are exponentially distributed, but controlled
by different parameters. These aspects are well described by a continuum field theory
with an FDT-violating dynamics, linearized about the half-filled disordered state. AsTc is
approached, the distribution of the transverse component flattens out to resemble a Gaussian.
Below criticality, the peak gradually moves away from the origin, which is the hallmark
of a second-order transition. Meanwhile, the histograms forŝ(0, 1) remain sharply peaked
at the origin throughout the transition. Though there may be non-trivial renormalization
effects, they appear to be small, lending much confidence to (4.5) being the appropriate
starting point for a field theory forT . Tc.

For future work, a number of lines of attack present themselves clearly. Our histograms
may be regarded as generalizations of those investigated by Binder [10] for the total
magnetization in the non-conserved Ising model. In that case, a much deeper understanding
of the critical properties ensued, e.g., universal cumulant ratio and distribution [10, 15]. For
the non-equilibrium system, only the cumulant ratio has been used extensively in simulation
studies [9]. Extension to include the entire distribution would be desirable, an undertaking
which will involve several anisotropic lattices [9]. On the theoretical front, a complete
theory of finite size effects, along the lines of [15], would give us a much clearer picture
of the universal behaviour. Beyond these, questions about the ordered state naturally arise.
Simulations of systems away from half-filling [16] with various lattices should be performed
systematically so as to map out the co-existence curve more reliably. Finally, we can point
to the large variety of non-equilibrium steady states [3] to which we can apply the methods
of histograms.
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